
Reference Manual
 For Apex version 2.2

Michael Freed
Eric Dahlman
Michael Dalal
Robert Harris

NASA Ames Research Center, 2002

2

Contents

1.0 Intro to Apex
1.1 What is Apex?
1.2 System Components
1.3 Getting more information

2.0 Getting Started
2.1 Setting up
2.2 Quick tour

3.0 Using Apex
3.1 Interacting with Apex
3.2 Loading a model
3.3 Running a simulation

3.3.1 Starting a simulation run
3.3.2 Pausing and resuming
3.3.3 Resetting
3.3.4 Single-stepping

3.4 Creating new models
3.4.1 Simworlds
3.4.2 Specifying a scenario
3.4.3 Specifying agent knowledge
3.4.4 Specifying agent resources
3.4.5 Registering a new simworld

3.5 Managing simulation output
3.5.1 Filtering raw trace data
3.5.2 Directing out put to a file
3.5.3 Generating and examining PERT charts
3.5.4 Exporting a PERT chart to Powerpoint

3.6 System patches
3.7 Getting help

4.0 Procedure Description Language
4.1 The action selection architecture
4.2 PDL Syntax (notation)

4.2.1 Procedure
4.2.2 Index (qv. patmatch)
4.2.3 Step
4.2.4 Waitfor
4.2.5 Select
4.2.6 Period
4.2.7 Forall
4.2.8 Profile
4.2.9 Priority
4.2.10 Interrupt-cost
4.2.11 Assume
4.2.12 Deffluent
4.2.13 Rank

3

4.3 PDL primitives
4.3.1 Start-activity
4.3.2 Terminate
4.3.3 Reset
4.3.4 Cogevent
4.3.5 Reprioritize
4.3.6 Hold-resource
4.3.7 Release-resource

4.4 PDL variables
4.5 Miscellaneous functions and constructs

4.5.1 do-domain
4.5.2 time representation

References
Appendices

A. Event traces
B. Native object hierarchy
C. Important Apex Lisp functions
D. Pattern matching
E. Troubleshooting and Known bugs

4

1.0 Introduction

1.1 What is Apex?

Apex is computer program for generating adaptive, intelligent behavior in complex
environments. It is the principle element of the Apex System which includes a range of
components for modeling, simulating and analyzing human behavior. Intended uses
include:

• helping engineers evaluate and design human-machine systems
• anticipating how newly introduced technologies will affect human operators
• standing in for human participants in a training simulation
• exploring or illustrating scientific theories of human performance

The Apex approach to human modeling separates aspects of behavior and
performance that apply to intelligent agents in general from aspects that are particular to
humans. The Action Selection Architecture (ASA) integrates AI techniques such as
hierarchical planning and online-scheduling seen as useful for creating agents with
human-level ability. By building capabilities into the architecture and providing a high-
level language for behavior representation, Apex makes it easier to create human agent
models for complex task environments. Findings from cognitive psychology and other
areas concerned with human performance are incorporated into the Human Resource
Architecture (HRA) which parameterizes and constrains the general agent model. A
human model in Apex combines the ASA and HRA with a set of behavior
representations, some specific to the task at hand, others general across many tasks.

Apex is meant to be a practical tool. It has proven successful in automating a
Human-Computer Interaction analysis method called GOMS, including an especially
powerful but complex variant called CPM-GOMS. The approach has also been useful
for rapidly developing simulations of normative human behavior and for reconstructing
incidents involving human error.

As a practical tool, one crucial consideration is to minimize the time and expertise
required to build new models. This goal influences every aspect of Apex. For example,
in production-system based cognitive architectures, behaviors are represented at an
“atomic” level at which the mechanisms of cognitive processing can be described in
detail. In Apex, behavior is represented at a high-level, allowing modelers to ignore how
behavior is generated and focus on what behaviors are desired. This can be viewed as
trading usefulness at representing scientific theories of cognition for usefulness at
representing complex, large-scale tasks. Similarly, Apex incorporates approaches to
many high-level aspects of cognition such as selecting action under uncertainty,
managing concurrent tasks, and task interleaving. These capabilities are relatively easy
to invoke though a modeler is provided little flexibility in representing how they are
realized.

In developing Apex, it has become clear that constructing a practical, broadly
applicable human-system modeling tool is too great a job for any small team of
individuals. Given the great number of issues to be addressed and the many different
kinds of expertise needed, such an endeavor is most naturally carried out through a

5

distributed development process. The design of the Apex system lends itself to
distributed development. While the action selection architecture is complex and its
subcomponents tightly coupled, the other elements of the system are modular and thus
relatively easy to extend, modify or replace. For example, cognitive, perceptual and
motor faculties represented in the resource architecture are completely independent of the
core action-selection mechanism, allowing modelers to "plug-in" alternative sub-models.
Similarly, Apex includes a set of reusable “building blocks” for new models that can
easily be modified or added to. This document is intended mainly to support the use of
Apex in its current form but also provides important information for developing new
Apex elements.

1.2 System Components

Software components of the Apex system fall into four categories or component layers
including: the intelligent agent layer, the human/environment layer, the infrastructure
layer and the user layer. The intelligent agent layer provides the ability to specify
simulation entities with complex behavior reflecting goals, new events and “how to”
knowledge. Its primary use in APEX is to model human operators, although it is also
useful for modeling other simulation entities such as robots and aircraft autopilots. The
intelligent agent layer currently includes a single component: the Action Selection
Architecture (ASA), an import from the field of artificial intelligence originally designed
to control mobile robots acting in complex, real-world environments. The capabilities it
provides facilitate simulation of relatively sophisticated aspects of human behavior such
as adapting to time-pressure, coping with uncertainty, and interleaving multiple tasks.

The human/environment layer includes a wide range of components for
specifying and making inferences about humans and other entities that populate a
simulation. An important subset of these components are human resources models –
representations of human cognitive, perceptual and motor faculties such as hands and
eyes – which together comprise the Human Resource Architecture (HRA). Each resource
model specifies performance-limiting characteristics. For example, the vision model
specifies a restricted field of view, variable acuity, and a time lag between sensing and
interpreting visual information. The agent and resource architectures combine to model
a human agent. While the action selection architecture provides the ability to engage in
complex behavior, the resource architecture causes this behavior to conform to human
limits.

Also included in the human/environment layer are means for representing and
reasoning about physical spaces (locales) and the spatial (e.g. containment, attachment,
adjacency) and visual properties (e.g. color, orientation) of objects in a locale. Other
components in this layer are building blocks for constructing models in human-computer
interaction domains. These include representations of interface widgets (e.g. buttons,
mice, keyboards) and of behaviors for using those widgets. The common theme for the
components of this layer is that they are ingredients for building models of human-
machine systems. Though intended to be reusable, they should not be considered core
components of the Apex system. Users are encouraged to extend or replace these
elements as they see fit.

6

The infrastructure layer provides essential services including simulation, trace
event logging and mechanisms for interoperating with non-Apex processes such as an
external simulation of a physical environment. The simulation component is composed
of three parts: a simple language for defining “objects” to be simulated, a simulation
engine whose job it is to carry out the actual simulation process, and a Lisp interface for
controlling the simulation process. Some extensions to the Apex system, including
development of new human resource models, require familiarity with simulation
mechanisms and other components of the infrastructure layer. However, most users will
probably need to know little more than how to operate the simulation engine – e.g. to
begin or pause a simulation trial.

The user interface layer provides components to facilitate model construction,
model debugging, and analysis and visualization of simulation output. The central
element of this layer is Sherpa, a GUI that provides a range of services including buttons
(shortcuts) for controlling the simulation engine, tools for handling large volumes of trace
output, tools for examining simulation entities during and after a run, and a facility for
automatically generating graphical representations of agent behavior.

To apply Apex in a particular domain, a user creates a simworld – a
representation of a particular task and task environment. For example, to simulate
people using a new automatic banking machine, an APEX user would represent the new
machine’s appearance and behavior, the procedural knowledge needed to operate it, and a
scenario providing specifications for a particular simulation run. Together, the APEX
system and user-defined simworld elements constitute an APEX application. To develop
new applications, a user should be comfortable programming in LISP and should become
familiar with the contents of this manual.

1.3 Getting More Information

This document focuses on the practical aspects of using Apex. For the current version,
see ftp://eos.arc.nasa.gov/outgoing/apex/apex/. More information is available from
several sources:

Published papers describe many aspects of Apex including: using Apex for CPM-GOMS
(John, et al. 2002) and GOMS (Freed and Remington, 2000) analyses; human error
prediction (Freed and Remington, 1998); human-system modeling methodology (Freed
and Remington 2000b; Freed, Shafto and Remington 1998; Freed and Shafto 1997); and
multitask management (Freed 2000; Freed 1998a).

Apex-related papers and other information can be found on an experimental website:
http://human-factors.arc.nasa.gov/apex/www/apex/

For the most detailed available description of the Apex action selection architecture and
the modeling approach it supports, see (Freed 1998b).

To report a bug or consult on a technical problem, contact the Apex development team
(apexhelp@eos.arc.nasa.gov). For information related to the development of the Apex
system send email to mfreed@arc.nasa.gov.

7

Extending and modeling in Apex may require programming in Common Lisp. The
complete text of Common Lisp by Guy Steele can be found at:
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html

8

2.0 Getting Started

2.1. Setting up

To use Apex you'll need the following software:

1. The Apex system

Using a standard web browser, Apex can be downloaded from the following ftp site
along with installation instructions (see the file README).

ftp://eos.arc.nasa.gov/outgoing/apex/apex/

2. Java Runtime Environment (JRE)

This is most likely already installed on your computer. If needed, the JRE may be
obtained from the Apex web site along with installation instructions (see the file
README).

3. Common Lisp system

Apex currently runs in different versions of Lisp. In some versions, you must install Lisp
as a separate step; in others Apex and Lisp are combined and downloaded as a single file.
Which is appropriate will vary depending on your platform and the current distribution.
The Apex installation instructions clarify this requirement.

4. Text editor

Using Apex requires programming in Common Lisp. The most popular editor for this is
Emacs, which is freely available for all platforms on which Apex runs. Emacs itself has a
few variations, including Emacs-like editors such as Fred (built in to Macintosh Common
Lisp) and Alpha (shareware). Any other text editor may also be used.

2.2 Quick Tour

This section briefly steps you through some of most basic operations in using Apex via
Sherpa, its graphical user interface. Using the attached Sherpa diagrams as a reference,
follow these instructions to load, run, and inspect the results of a sample scenario
modeling a person operating a modeled automatic teller machine (ATM).

1. Start Apex

Directions for how to start and exit Apex, which vary depending upon the distribution,
are found in the Apex installation instructions. Using the method appropriate for your
Apex distribution start Apex and its graphical user interface, Sherpa.

9

2. Load a Simworld

a) Click the Play button in Sherpa. This "connects" Sherpa to the Apex system
(which runs as a separate application). The button will be replaced by a drop-down
menu containing sample simworld names.

b) Select a Simworld. Select the simworld ATM-CPM-WORLD from the
drop-down menu. This loads the simworld into Apex. Sherpa's
screen will change to reveal the simulation control and viewing interface.

3. Run the Simulation

Press the Play button. Events will print in the Trace view as the simulation runs.

4. Inspect Objects

The Slice view lists the scenario objects in a collapsible hierarchical fashion. Click on the
"lever" icons to expand objects. Double click on objects to display information about
them in Inspect view.

10

5. View the PERT Chart

Click on the PERT chart button to generate a PERT chart for the simulation run. Inspect
the chart and experiment with its manipulation controls.

Note that the PERT chart window has become the top View tab. To bring up the
simulation control interface, click on the ATM-CPM-WORLD View tab.

6. Change Trace settings

Click on the Events tab to access the Event view. By default, only a small fraction of the
trace data produced during simulation is shown. To see more, click on the Set show level
drop-down menu and select asa-low, then click the Trace button to show a new (larger)
subset of the events generated in the previous simulation run. See section 3.5.1 for more
on controlling trace display.

11

3.0 Using Apex

3.1 Interacting with Apex

Users interact with Apex mainly through three interface elements: a standard text editor
such as Emacs; Apex’s graphical user interface, Sherpa; and a Lisp interactive window,
known as a listener. In most cases, a user will wish to have all three of these elements
available when building and running Apex models.

A text editor is needed to create and modify Apex applications. Apex
applications are written in the Common Lisp programming language, for which the most
popular editor is Emacs. Emacs “understands” Lisp better than any other editor (being
itself largely written in Lisp) and provides a large and customizable set of programming
conveniences. However, any text editor is acceptable. Alternatives to Emacs include
Fred (built into MCL) and Alpha (Mac) which have Emacs-like features, vi (built into
Unix).

Sherpa is used to start Apex simulation runs, examine simulation elements, and to
generate, format and display simulation output. It is possible to use Apex without using
Sherpa. However, Sherpa provides the only means for obtaining graphical output from a
simulation (e.g. PERT charts, object trees) and for pausing a simulation run interactively.

The Lisp listener (or simply listener) is a text window always present when Apex
is running. Listeners are inherent to Common Lisp systems and provide an interface for
evaluating Lisp expressions. Interacting through the listener can be especially valuable
when debugging Lisp code. Depending upon platform, there may be one or more
listeners present while Apex is running. A listener may also be used as a primary means
of interacting with Apex1. This can be done in two ways. A user can invoke Lisp
functions directly using functions described below (e.g. (startsim)). Alternately, a
prompt-driven interface can be invoked by entering

(apex)

in the listener. This provides access to all the features of Apex, except for the graphical
features of Sherpa. The prompt-driven interface is still in development; user feedback is
especially encouraged.

Listeners also display debugging information and other messages while Apex
runs. Most of what is normally displayed is internal information that can be ignored.
However, if an error occurs, the Apex run is interrupted and a debugging prompt appears,
accompanied by an error message. Such occurrences are most frequent during
development or modification of a model and are usually caused by Lisp programming
errors.

1 Warning: using the listener to interact with Apex while also using Sherpa may lead to unexpected
behavior – only one means should be used in an Apex session.

12

3.2 Loading a model

A model is also called a simworld (simulation world). Using Sherpa, select Simworld
from the File menu to see another menu of available simworlds. Or, if the Sherpa
window has just appeared or Sherpa has been reset, pressing the Start button replaces this
button with a drop-down menu of simworlds. A simworld begins loading when the
mouse is released. This may take 10-20 seconds.

To load a simworld directly from Lisp, use the function load-simworld. For
example, the following loads a simworld called atm-world.

(load-simworld ‘atm-world)

3.3 Running Simulations

3.3.1 Starting a simulation run

Once a simworld is loaded, the simulation may be run by clicking Sherpa’s Play button.
Alternately, the Lisp command (startsim) may be used. This function is also used to
resume after a pause. To force the simulation to start at the beginning, use (restartsim).
The simulation will run until completion or until a scheduled pause point arrives.

3.3.2 Pausing and resuming a run

T o pause a simulation run interactively (while the simulation is ongoing), click the Pause
button2. Alternately, a user can program (preset) a pause from the Lisp Listener. This is
especially useful for model debugging. Four different pause presets are supported:

Scheduled pause: A pause may be scheduled for a specified simulation clock time. The
time may be specified before the simulation is run, or during a pause, if the (new)
scheduled pause time is greater than the current time. Pauses are scheduled by typing the
following in the listener:

(set-pause-time N)

where N is an integer specification of the time in simulation time units (milliseconds by
default).

Cyclic pause: A simulation pause can be scheduled to occur once every N simulation
events (events in the simulation engine’s internal activity queue). This is useful for
coping with infinite loop bugs which can occur within a given simulation “moment,”
making it unhelpful to pause at a scheduled time that will never be reached. Such pauses
are scheduled by typing the following into the listener:

(set-pause-cycle N)

2 The pause button is not supported on all platforms, due to lack of proper multithreading support in some
Lisp implmentations.

13

where N is an integer specifying the number of events.

After initialization: The simulation may be paused immediately after a simulation trial
has been initialized using the form:

(pause-after-init <flag>)

where <flag> is either T (true) or nil (false). This is useful for determining whether a bug
occurs before or after initialization is compelte.

After each trial: The Apex simulation engine supports multitrial simulation runs. The
simulation may be paused at the completion of each trial using the form:

(pause-after-trial <flag>)

where <flag> is either T (true) or nil (false).

Pauses may be specified non-interactively (i.e in code) by inserting the forms given
above forms in your Lisp simworld code, most commonly in the initialize.lisp file.

3.3.3 Resetting the Simulation

Resetting a simulation means restoring it to its starting state. This may be done after a
run is complete or during a pause. Click the Reset button in Sherpa. In Lisp, use
(resetsim).

3.3.4 Single-stepping.

It is possible to advance a simulation one step, or activity processing cycle, at a time.
Single steps may be taken when the simulation is reset or whenever it is paused.
Attempting to single step when the simulation is finished will have no effect. Click the
Step button in Sherpa. In Lisp, use (stepsim).

3.4 Creating new models

3.4.1 Simworlds

Models in Apex are called simworlds because they include not only human agents and
their cognitive/behavioral representations, but also models of the physical environment.
To build a simworld, one creates three files with the following filenames:

1. initialize.lisp (specifies one or more simulation scenarios)
2. pdl.lisp (specifies “how-to” knowledge)
3. definitions.lisp (specifies properties of objects in the task environment)

14

The initialize file contains specifies the scenario to simulated. This includes the initial
state of every object in the simulation including human agents and their behavior
representations. Also included are any parameters that determine how events unfold over
the course of the simulation such as the probabilistic values for unusual events.
Information on constructing an initialization (scenario) file is provided in 3.4.2. The pdl
file describes how-to knowledge notated in Procedure Description Language (see section
4) used by any human agent in the simulation. The definitions file contains any Lisp
code needed to support the scenario. This will typically include class and method
definitions for physical object types specific to the scenario’s domain. For example, in a
commercial jet scenario, the definition file might include definitions related to aircraft
flight behavior and cockpit controls.

The simworld files must reside in the same directory (folder) as one another, but
this directory may be filed anywhere. It is strongly advisable to file it outside the Apex
installation directory, so that your work is not accidentally overwritten when installing a
new version of Apex. These files do not have to contain all (or indeed any) of the
information directly, but may instead load other files as needed.

3.4.2 Specifying a scenario

A scenario file specifies everything the generic simulation engine needs to know for a
simulation run. This should include: a set of entities (including humans) to be simulated;
the initial states and initial behaviors of those entities; setting for parameters that affect
how the simulation unfolds but are stored external to simulation entities (e.g. a global
variable representing the probability of some unusual occurrence). Initialization is
performed by a simulation engine method called initialize-simulation. The following
internal organization is recommended (see apex/app/examples/<simworld>/intialize.lisp)
for examples):

(initialize-simulation
 <specify-simulation-parameters>
 <init-external-datastores>
 <init-state-toplevel-objects>
 <assemble-toplevel-objects>
 <link-toplevel objects>
 <init-behavior-toplevel-objects>)

The first two elements will not normally be needed. Simulation parameters include
scheduled pauses (3.3.2) and the number of simulation trials to be run (1 trial by default).
External datastores refer to entities created prior to initializing the simulation that contain
information used by simulation objects; initialization is required if stored information can
vary, especially as a result of write actions by simulation entities.

Toplevel objects are the primary entities to be simulated. These often “contain”
other simulation entities which are considered parts, rather than toplevel. For example,
the data structure representing a human contains resource modules representing a left
hand, a right hand, voice, etc… During initialization, toplevel objects are created and

15

given initial state values. Assemble methods specific to the class of object just created
are then used to automatically create and initialize parts. Apex includes a definition for
the class standard-human and an assemble method that creates resource parts for it.
Classes and assembly methods defining non-human entities such as keypads, mice and
automatic teller machines can be found in example simworlds. New definitions should
be declared in the simworld’s definitions.lisp file.

After objects are created and their initial state set, functional linkages between
objects should be established. For example, after creating a switch and a lamp as
individual objects, the two can be linked to represent that the switch controls the lamp.
Such information is usually stored just as state attributes are stored – i.e. in slots specified
in the class definition. Thus, the definition of a lamp class might include the slots
illuminated to represent whether it is on or off, working to represent whether it is working
or malfunctioning, and the link slot controlled-by which points to the object that
determines whether it is powered on.

Finally, behaviors of instantiated objects can be initialized. This has to come last
because the specification of behavior often requires knowing its state and links. For
instance, the method start-activity might be used to cause the lightswitch to itself glow
whenever the lamp is off (making it easier to find in the dark) but in working order. The
method representing this behavior needs to check the state values of the switch and the
lamp to determine correct initial behavior.

3.4.3 Specifying agent knowledge

Agent knowledge is specified in the file pdl.lisp using the PDL notation described in
section 4. A complete PDL specification requires:

• a top-level PDL procedure with an index clause of the form (index (do-domain)).
This is used to initialize agent behavior.

• a PDL procedure corresponding to every step in the do-domain procedure and
every step in these new procedures other than steps specifying primitive actions

3.4.4 Specifying new agent resources

In an Apex human model, the general action selection architecture does not interact with
the world model directly. Instead, perceptual, cognitive and motor resources comprising
a resource architecture mediate interactions with the world and also constrain the agent to
perform with human limits and other characteristics. Resources are implemented as
software modules and may be replaced or modified with moderate effort3. This section
describes how to create a new resource, e.g. a prehensile tail. Users interested in
creating or modifying resources should look at examples in apex/app/building-
blocks/human.

3 It not always necessary to define new resources to get some of the functionality one might want. If the
only need for a resource is to affect the agent’s resource allocation, it is enough to simply name the
resource in a profile clause (making it a virtual resource). The action selection architecture will do resource
conflict detection and resolution without regard for whether that resource is associated with a class
definition.

16

Step 1: Define the new resource type

Every resource is implemented as Lisp class with slots representing resource state
attributes. The following defines a class of resources called tail with a single state
attribute called grasp. The value of this slot is a representation of an object that the tail is
currently grasping – or nil if no such object exists.

(defclass tail (human-resource physob)
 ((grasp :accessor grasp :initarg :grasp :initform nil)))

Tail inherits from the classes human-resource and physob (which itself inherits from
visob – see appendix B) which carry along a number of state attributes. Users are
encouraged to study the definitions of these objects. New resource classes associated
with a particular model can be stored in a simworld definitions file.

Step 2. Redefine the class standard-human to include the new resource

Human models in Apex are instances of the class standard-human. As there is currently
no support for human models based on other classes, standard-human and associated
functions must be modified to make use of new resource types. This class is defined in
apex/app/building-blocks/human/human.lisp The first required modification is to the
class definition itself, adding a slot named for the new resource.

(tail :accessor tail :initarg :tail)

Next modify the assemble method defined in the same file to include a call to the
function add-apex-resource.

(add-apex-resource (make-instance ‘tail) human-1)

In some cases, it is useful to create active resources – i.e. resource that engage in some
periodic behavior rather than passively accepting commands from the action selection
architecture. Such behaviors can be initialized in the assemble method. For example, the
following line will initiate a wiggle action every 1000 simulation time units (1 unit = 1ms
by default). This assumes that the method wiggle has been defined and, when called,
produces an appropriate effect.

 (start-activity human-1 ‘wiggle :resource (tail human-1) :update-interval 1000)

Step 3: If appropriate, define activities the new resource can be commanded to
carry out

Resources representing motor faculties (e.g. hands, tails) can be commanded to action by
the PDL primitive action type start-activity. Each new kind of action (activity) is
represented by a class (used to represent the state of the action at a given moment) and

17

one or more methods defining the effect(s) of the activity. There are two kinds of
methods: complete-activity and update-activity. The former is used to describe what
happens when the activity comes to completion. The latter describes what happens at
intervals prior to completion. The following definitions support the activity tail-grasp.4

(defclass tail-grasp (resource-activity)
 ((target :accessor target :initarg :target :initform nil)))

(defmethod complete-activity ((act tail-grasp) (tail-1 tail) &key cause)
 (signal-event (grasped (target act) (setting act) :cause cause))

(defmethod grasped ((obj physob) (tail-1 tail) &key cause)
 (setx (grasp tail-1) obj :cause cause))

A step from such as the following can be used to invoke this behavior from PDL:

(step s1 (start-activity tail tail-grasp :target banana :duration 2500))

Step 4: If appropriate, define event-generating processes invoked by the resource

Some resources, particularly those modeling perception, generate input to the action
selection architecture called cogevents. This is accomplished using the function cogevent

(cogevent <eventform> <agent> [:trigger-asa <Boolean>])

where <eventform> is an arbitrary list representing what has occurred and <agent> is a
pointer to the (human) agent that has detected the event. The optional trigger parameter
determines whether the event should be processed by the action selection architecture
immediately or whether it should be stored in a buffer and processed the next time a
processing cycle for the architecture occurs.5

3.4.5 Registering a new simworld

Apex can correctly load a simworld only if that simworld has been named and registered.
Registration is accomplished by entering the following Lisp form:

(defsimworld <simworld-name> <directory>)

where simworld-name is a symbol without a quote and directory is a string describing
where the simworld files are located in your directory structure. Example:

4 Signal-event and setx are special forms used to track causal dependencies in a simulation. The former
should be wrapped around a function or method call implementing a change of state to one or more
simulated objects. Setx should be used to effect the state change as it were setf.
5 There is no automatic architecture cycle; it must be triggered by a resource. In the default model, the
vision resource triggers processing periodically.

18

(defsimworld my-atm-world “Macintosh HD:Apex Worlds:my-atm-world”)
(defsimworld my-atm "/home3/smith/simworlds/my-atm-world")

The first example uses Macintosh pathname format and the second, Unix (Linux). Use
the correct syntax for your platform. Also note that the simworld name and its directory
name need not be identical, allowing the directory to abbreviate.
The defsimworld form may be typed into the listener, but Sherpa will then need to be
reset (if it has already been started). To avoid the inconvenience of having to enter this
form in every session, one can put all defsimworld forms in the file
apex/app/examples/allworlds.lisp, which is loaded whenever Apex is started.

3.5 Managing Simulation output

All events that occur during a simulation trial are recorded in an event history or trace.
Trace information is displayed as textual data with each line specifying a timestamp and
description of a single simulation event. The trace may be viewed as the simulation runs
(i.e. as the events occur), after the run is complete, or during a pause. To cause a trace to
be displayed after a run (possibly with new filter settings – see below), press the Print-
Trace button above Sherpa’s trace view pane (it looks like a T). From Lisp, type
(generate-trace).

3.5.4 Filtering raw trace data

A simulation trace may be viewed in its entirety, but this is usually too much information
to be useful. It is possible to specify filter criteria that limit the displayed trace
information. Filter effects apply whether the trace is viewed at runtime or afterwards.
Events are most often filtered based on event-type. The first element of an event
description determines its type. For example, the types of the two example events below
are task-started and suspended.

(task-started #{task-21 (fly-to-waypoint)}
(suspended #{task-19 (push-button-1)}

There are three basic ways to filter event traces:

1. The first is to specify a show level. A show level is a name that specifies a set of event
types to be shown. In Sherpa, click on the Event tab in the leftmost display pane; all
event types for the currently loaded simworld are displayed with checkboxes. The Show
Level menu allows selection among predefined show levels. Selecting a show level
causes event type checkboxes associated with that show level to become checked. In
Lisp, show levels are set with the show function when used in the following form:

(show :level <level-name>)

19

where level-name is a symbol without quotes. Predefined show levels are described in
Appendix A.

2. Using Sherpa, specify particular event-types of interest. Select the event tab as above,
then click on checkboxes to toggle whether or not to have a particular event type shown.
Note that selecting or unselecting event types modifies the choices associated with the
previous show-level, though that show-level is still displayed on the interface. In Lisp,
event types are selected with the show function when used in the following form:

(show <event-type>)

where <event-type> is a symbol without quotes. Event types are listed in Appendix A.

3. In Lisp (but not Sherpa), it is possible to filter events on parameters other than, and in
addition to, event types. Like the previous features, this is done using the show function.
The show function is described in Appendix A.

3.5.5 Directing output to a file

Traces may be saved in a file by typing the following form in the listener:

(save-trace <filename>)

where filename is a string and may either be a full pathname, or just a filename. In the
latter case, the trace is saved in the current simworld’s directory.

3.5.6 Generating and examining PERT charts

In Sherpa, a PERT chart for a simulation run may be generated by clicking the PERT
chart button located above the trace view pane. A new tab for the PERT chart is created
and displayed. PERT charts cannot be generated by direct commands from Lisp. The
PERT chart view can be manipulated in several ways.

• A slider bar provides zoom control
• The expand/contract buttons control distance between PERT boxes
• The timeline button toggles between a PERT view and a timeline view

3.5.7 Exporting a PERT chart to Powerpoint

Sherpa cannot create Microsoft Powerpoint representations of PERT charts directly.
Instead, it outputs Visual Basic macros that can be read in from Powerpoint. PERT
charts you create using the procedure below will not likely fit onto one slide, but will
tend to trail off the right hand edge. You'll need to edit charts in Sherpa and/or
Powerpoint to get good results.

1. Create a PERT chart in Sherpa

20

2. In Sherpa, press the button with the PowerPoint icon. Then select a folder and
filename at the prompt. A Visual Basic macro representing the PERT chart will be
written out at this location.

3. From Powerpoint select from the menu: Tools > Macro > Visual Basic Editor. This
will open the visual basic editor.

4. From Powerpoint, load the macro created in step 2

On a Mac: From the Visual Basic interface, select Insert > Module. Select
Insert > File… Set the Show field in the dialog selection box to All Files.
Select the file you created in step 2.

On a PC: From the Visual Basic interface, select File > Import File. Select the
file you created in step 2.

5. Return to Powerpoint and click on the slide to contain the PERT chart. Select from
the menu: Tools > Macro > Macros and run the macro "CreatePERTChart". For a large
PERT chart, this may take a few moments to complete.

Note: To remove files created in step 2 (which will otherwise accumulate), go to the
Visual Basic editor and select ModuleX in the Project window. From the menu, then
select: File > Remove ModuleX.

3.6 System patches

Patches provide extensions or modifications or fixes to the existing Apex software
without requiring reinstallation. Users can acquire patches from:

 ftp://eos.arc.nasa.gov/outgoing/apex/apex/patches/

Download all of the .lisp files in this directory and put them in your apex/patches
directory. Delete any existing versions of the same files if needed, including any
compiled versions (e.g. those ending in .fasl). The patches will automatically be in effect
the next time you start Apex. If you wish to install the patches without restarting Apex,
type (load-patches) at the Lisp prompt. A brief description of each patch is found in the
file.

3.7 Getting Help

If you experience problems with Apex, please consult the Troubleshooting sections in
this manual and of your Apex installation instructions. If necessary, contact the Apex
development team by sending email to:

21

apexhelp@eos.arc.nasa.gov

Email is the strongly preferred means of technical support, and probably receives faster
response than any other means of contact.

If you are reporting what appears to be a bug, first see if you can reproduce it.
Please include the following information in your email:

• Detailed description of the problem, including any error messages that appeared
(in their entirety, cut and pasted if possible), the last thing you did before the
problem occurred, and whether you could reproduce the problem.

• Your operating platform: type of computer and operating system, version of Apex
(in "Help" menu of Sherpa), and version of Common Lisp (if applicable).

22

4.0 Procedure Description Language (PDL)

By relieving the brain of all unnecessary work, a good notation sets it free to
concentrate on more advanced problems, and, in effect, increases the mental
power of the race.

- Alfred North Whitehead

Procedure Description Language (PDL) is a formal language used to specify the behavior
of Apex agents. PDL can be seen as a means of representing particular kinds of content
– e.g. normative human behavior as defined by standard operating procedures; a task
analysis describing observed or expected behavior; a cognitive model reflecting human
procedural and declarative memory. However, making effective use of PDL requires also
understanding it as a programming language for invoking the capabilities of the Apex
action selection architecture. This section describes the syntax of PDL following a brief
overview of the workings of the action selection architecture – see (Freed 1998) for more
detail.

The central language construct in PDL is a procedure, which contains at least an
index clause and one or more step clauses. The index uniquely identifies the procedure
and typically describes what kind of task the procedure is used to accomplish. Each step
clause describes a subtask or auxiliary activity prescribed by the procedure.

(procedure
 (index (turn-on-headlights)
 (step s1 (clear-hand left-hand))
 (step s2 (determine-location headlight-ctl => ?loc)
 (step s3 (grasp knob left-hand ?loc) (waitfor ?s1 ?s2))
 (step s4 (pull knob left-hand 0.4) (waitfor ?s3))
 (step s5 (ungrasp left-hand) (waitfor ?s4))
 (step s6 (terminate) (waitfor ?s5)))

The procedure above, representing a method for turning on the headlights in some cars,
illustrates several important aspects of PDL. One important point is that a procedure’s
steps are not necessarily carried out in the order listed or even in a sequence. Instead,
steps are assumed to be concurrently executable unless otherwise specified. If step
ordering is desired, a waitfor clause is used to specify that the completion (termination)
of one step is a precondition for the start (enablement) of another. In the example above,
the steps labeled s1 and s2 do not contain waitfor clauses and thus have no preconditions;
these steps can begin execution as soon as the procedure is invoked and can run
concurrently. Step s3, in contrast, includes the clause (waitfor ?s1 ?s2) . This means that
step s3 becomes enabled only when steps s1 and s2 have terminated.

23

Procedures are invoked to carry out an agent’s active tasks. Tasks, which can be
thought of as agent goals6, are stored on a structure called the agenda internal to the
action selection architecture. When a task on the agenda becomes enabled (eligible for
immediate execution), what happens next depends on whether or not the task corresponds
to a primitive action. If so, the specified action is carried out and then the task is
terminated. There are a limited number of primitive action types (see section 4.3), each
with a distinct effect.

If the task is not a primitive, the action selection architecture retrieves a procedure
whose index clause matches the task. For example, a task of the form (turn-on-
headlights) matches the index clause of the procedure above and would thus be retrieved
once the task became enabled. Step clauses in the selected procedure are then used as
templates to generate new tasks, which are then added to the agenda. It is conventional to
refer to these tasks as subtasks of the original and, more generally, to use genealogical
terms such as child and parent to describe task relationships. In this example, there are
six steps so six new tasks will be created. The process of decomposing a task into
subtasks on the basis of a stored procedure is called task refinement. Since some of the
tasks generated through this process may themselves be non-primitive, refinement can be
carried out recursively. This results in the creation of a task hierarchy.

An Apex agent initially has on its agenda a single task of the form (do-domain).
All agent behavior results from tasks descending hierarchically from the do-domain task.
Thus, the specification of agent behavior for a given application (model) must include a
procedure with the index clause (index (do-domain)) to bootstrap (initialize) behavior.
Steps of the do-domain procedure should specify not only the main “foreground”
activities of the agent, but also any appropriate background activities (e.g. low priority
maintenance of situation awareness) and even reflexes (e.g. pupil response to light).

4.1 The action selection architecture

The Action selection architecture7 (AA) is the algorithm Apex uses to generate behavior.
Input to the algorithm consists of events that the agent might respond to and a set of
predefined PDL procedures. The architecture outputs commands to resources. When
used to generate behavior for a simulated human agent, resources are representations of
cognitive, perceptual and motor faculties such as hands and eyes. Since the action
selection architecture could be used to model other entities with complex behavior such
as robots and autopiloted aircraft, resources could correspond to, e.g., robotic arms or
flight control surfaces. The action selection architecture incorporates a range of
functional capabilities accessible through PDL. These functions fall into four categories:

6 The term task generalizes the concept of a classical goal – i.e. a well-defined state, expressible as a
proposition, that the agent can be seen as desiring and intending to bring about (e.g. “be at home”). Tasks
can also, e.g., encompass multiple goals (“be in car seat with engine started and seatbelt fastened”), specify
goals with indefinite state (“finish chores”), specify goals of action rather than state (“scan security
perimeter ”), and couple goals to arbitrary constraints (“be at home by 6pm”).
7 Designated the Action Selection Architecture in other documents. To some, this term implies that the
architecture performs AI planning tasks, but not scheduling or control. The term Action selection
architecture was chosen to be happily ambiguous about the underlying technology.

24

n hierarchical action selection
n reactive control
n resource scheduling
n general programming language functions

Hierarchical action selection refers to the process of recursively decomposing a high-
level task into subtasks, down to the level of primitive actions. The basic process of
selecting action by hierarchical task decomposition is simple. Tasks become enabled
when their associated preconditions have been satisfied. If the task is not a primitive, a
procedure whose index clause matches the task is retrieved and one new task (subtask) is
created for each step of the selected procedure. If the enabled task is a primitive, the
specified action is executed and the task is terminated.

PDL provides flexibility in controlling how and when task decomposition takes
place. The issues of how to decompose a task arises because there are sometimes
alternative ways to achieve a goal, but which is best will vary with circumstance.
Criteria for selecting between different procedures are represented in the index clause
(see section 4.2.2) and the select clause (4.2.5). The issue of when to decompose a task is
equally crucial since an agent will often lack information needed to select the appropriate
procedure until a task is in progress. The ability to specify what needs to be known in
order to select a procedure (informational preconditions) is provided by the waitfor clause
(4.2.4).

Reactive control refers to a set of abilities for interacting in a dynamic task
environment. As noted above, the ability to cope with uncertainty in the environment
sometimes depends on being able to delay commitment to action; when crucial
information becomes available, the agent can select a response. Another aspect of
reactivity is the ability to handle a range of contingencies such as failure, interruption,
unexpected side-effects, unexpectedly early success and so on. Integrating contingency-
handling behavior with nominal behavior is quite challenging and benefits from building
certain principles and heuristics into the architecture. For example, Apex incorporates a
heuristic preference for continuing an ongoing task over allowing a new task to interrupt.
The preference can be increased or negated using the interrupt-cost construct (4.2.10).

Reactive mechanisms combined with looping (4.2.6) and branching (4.2.2; 4.2.4;
4.2.5) allow closed-loop control – i.e. the ability to manage a continuous process based
on feedback. The combination of a discrete control mechanisms such as hierarchical
action selection with a continuous control mechanisms allows PDL to model a wide
range of behaviors.

Resource scheduling refers to the ability to select execution times that meet
specified constraints for a set of planned actions. Typically, an overriding goal is to
make good (possibly optimal) use of limited resources. Actions can be scheduled to run
concurrently unless they conflict over the need for a non-sharable resource (e.g. a hand)
or are otherwise constrained. For example, an eye-movement and an unguided hand
movement such as pulling a grasped lever could proceed in parallel. PDL includes
numerous clauses and primitive action types for dynamically asserting, retracting and
parameterizing scheduling constraints (4.2.4; 4.2.8; 4.2.9; 4.2.10; 4.3.5; 4.3.6; 4.3.7).

Scheduling is tightly integrated with reactive control and hierarchical planning.
In a less tightly integrated approach, these functions might be assigned to modular

25

elements of the architecture and carried out in distinct phases of its action decision
process. In Apex, these activities are carried out opportunistically. For example, when
the information to correctly decompose a task into subtasks becomes available, the
architecture invokes hierarchical planning functions. Similarly, when there are a set of
well-specified tasks and scheduling constraints on the agenda, Apex invokes scheduling
functions.

This has two important implications for the role of scheduling in Apex. First,
scheduling applies uniformly to all levels in a task hierarchy. In contrast, many
approaches assume that scheduling occurs at a fixed level – usually at the “top” where a
schedule constitutes input to a planner. Second, the tasks and constraints that form input
to the scheduler must be generated dynamically by hierarchical planning and reactive
control mechanisms, or inferred from local (procedure-specific) constraints, evolving
resource requirements, and changes in the execution state of current tasks. Basic
scheduling capabilities can be employed without a detailed understanding of the
architecture. For more advanced uses of these capabilities, it is hoped that the PDL
construct descriptions will prove helpful. Further information can be found in Freed
(1998a, 1998b).

PDL includes language constructs for typical programming language functions
such as looping and branching. However, the user will sometimes wish to access data or
functions not directly supported in PDL but available in the underlying Lisp language.
PDL supports callouts to Lisp that apply to different aspects of task execution including:
precondition handling (4.2.4; appendix D), action selection (4.2.5), specification of
execution parameters (4.2.6; 4.2.9; 4.2.10; 4.2.11) and specification of the actions
themselves (see “special procedures” in 4.2.1).

4.2 PDL Syntax

PDL syntax will be described using the following conventions:
• () all PDL constructs are enclosed by parentheses
• [] square-brackets enclose optional parameters
• < > angle-brackets enclose types rather than a literal values
• | vertical bars separate alternative values
• { } curly brackets enclose alternatives unless otherwise enclosed
• X+ means that 1 or more instances of X are required
• X* means that 0 or more instances of X are required

In addition, the following terms are used. A procedure-level clause is a language
construct embedded directly in a PDL procedure. Examples include index clauses and
step clauses. Step-level clauses such as waitfor are embedded directly in a step clause.
The procedure construct is itself a first-class construct, meaning that it is not embedded in
any other language element. A pattern parameter is a parenthesized expression that may
contain variables (denoted as a symbol starting with a question-mark such as ?x).
Patterns, which are matched against each other by the pattern matcher (see appendix D),
appear in several PDL clauses. A Lisp symbol is a sequence of characters that that may
include alphanumerics, dashes, and some other characters. A Lisp symbolic expression,
or s-expression, is either a Lisp symbol or a list of symbols and Lisp expressions enclosed

26

by parentheses. An Apex variable is a symbol whose first character is a question-mark –
e.g. ?x. Symbols and s-expressions in PDL clauses may contain Apex variables.

4.2.1 Procedure

first-class construct

(procedure [:concurrent] <index-clause> <procedure-lvl-clause>+)
(procedure [:sequential|:ranked] <index-clause> <step-clause>+)
(procedure :special <index-clause> <procedure-level-clause>+ <s-expression>)

There are four types of procedures: concurrent, sequential, ranked and special. All types
must contain an index clause. By default, procedures are of type concurrent. This means
that all tasks generated from the procedure’s steps are assumed to be concurrently
executable, except where ordering is specified by waitfor clauses. A concurrent
procedure will usually include an explicit termination step such as s4 in the example
procedure below left. In this case, the parent task {task-15 (open door)} will terminate
when the last of its subtasks {task-18 (push)} terminates.

(procedure
 (index (open door))
 (step s1 (grasp door-handle))
 (step s2 (turn door-handle) (waitfor ?s1))
 (step s3 (push) (waitfor ?s2))
 (step s4 (terminate (waitfor ?s3))))

As in this example, it is quite common to define procedures consisting of a totally
ordered set of steps. Such procedures can be conveniently represented using the
sequential procedure syntax. The following example is equivalent to the concurrent
procedure above.

(procedure :sequential
 (index (open door))
 (grasp door-handle)
 (turn door-handle)
 (push))

A sequential procedure includes only an index clause and a list of steps to be carried out
in the listed order. No terminate clause is specified. Only the activity-description
argument of each step is specified; the symbol step, the step-tag argument and step-
level clauses are not required or allowed. Sequential procedures are not really a separate
type, but an alternative syntax. PDL mechanisms automatically translate them into
equivalent concurrent procedures by adding a terminate step and waitfor clauses as
needed to specify step order.

27

Ranked procedures abbreviate a concurrent procedure form in which rank clauses
(4.2.13) are added to each step. Rank values in these procedures are in ascending order of
appearance . Thus, the following two procedures are equivalent:

(procedure (procedure :ranked
 (index (open door)) (index (open door))
 (step s1 (grasp door-handle) (rank 1)) (grasp door-handle)
 (step s2 (turn door-handle) (rank 2)) (turn door-handle)
 (step s3 (push) (rank 3)) (push))
 (step s4 (terminated) (waitfor ?s1 ?s2 ?s3)))

Special procedures are a way to call Lisp code directly during task execution.
This is useful for controlling and accessing data from processes external to the action
selection architecture and for carrying out functions that would be awkward or impossible
to represent purely in PDL. In the first example below, the procedure uses the simulation
engine function end-trial to stop the simulation from continuing (perhaps indefinitely)
past the point of interest.

(procedure :special
 (index (stop simulation trial))
 (end-trial))

In the next example, a special procedure is used to compute the distance between two
points in a plane. Values returned by the Lisp body of a special procedure are bound to
variables in the return value form (if any) of the calling step (see 4.2.3). Thus, executing
a step such as (step s5 (compute-distance ?p1 ?p2 => ?d) (waitfor ?s4)) would cause the
procedure to be called and its return value bound to the variable ?d.

(procedure :special
 (index (compute-distance ?point1 ?point2)) ; points are lists of the form (x y)
 (sqrt (exp (- (first ?point1) (first ?point2)) 2)
 (exp (- (second ?point1) (second ?point2)))))

Special procedures may include procedure-level clauses other than index, but may not
include any step clauses. When a task for which a special procedure has been selected
becomes enabled, that task is executed and then terminated just as if it were a primitive
action.

4.2.2 Index

procedure-level clause

(index <pattern>)

Each procedure must include a single index clause. The index pattern uniquely identifies
a procedure and, when matched to a task descriptor, indicates that the procedure is

28

appropriate for carrying out the task. The pattern parameter is a parenthesized expression
that can include constants and variables in any combination. The following are all valid
index clauses:

(index (press button ?button))
(index (press button ?power-button))
(index (press button ?button with hand))
(index (press button ?button with foot))

Since index patterns are meant to uniquely identify a procedure, it is an error to have
procedures with non-distinct indices. Distinctiveness arises from the length and constant
elements in the index pattern. For example, the first and second index clauses above are
not distinct since the only difference is the name of a variable. In contrast, the 3rd and 4th

index clauses are distinct since they differ by a constant element.
Apex uses the pattern matcher from Norvig (1992) which provides a great deal of

flexibility in specifying a pattern. For example, the following index clause includes a
constraint that the pattern should not be considered a match if the value of the variable is
self-destruct-button.

(index (press button ?button (?if (not (eql ?button ?self-destruct-button)))))

In the next example, the variable ?button-list will match to an arbitrary number of pattern
elements. This provides the flexibility to create a procedure that presses a list of buttons
without advance specification of how many buttons will be pressed.

(index (press buttons (?* button-list)))

See Norvig (1992) and appendix D for more information on the pattern matcher.

4.2.3 Step

procedure-level clause

(step <step-tag> <step-description [=> {var|pattern}]> [step-level-clause]*)

Step clauses in a procedure specify the set of tasks to be created when the procedure is
invoked and may contain additional information on how the tasks should be executed
(e.g. ordering constraints). Each step must contain a step-tag and step-description;
optionally, an output variable and/or any number of step-level clauses may be added.

A step-tag can be any symbol (as defined by Lisp), although no two steps in a
procedure can use the same tag. Step-tags provide a way for steps in a procedure to refer
to one another. In particular, whenever a new task is created from a procedure step, the
action selection architecture creates a variable based on the step tag and binds that
variable to the new task. E.g. when (step s4 (go west)) is used to create {task-92 (go
west)}, the variable ?s4 is created and bound to the data structure for task-92. The task
refinement process also generates the variable ?self which is bound to the task being

29

refined – i.e. the parent to task-92 in this example. This allows subtasks to refer to their
parent task.

The step-description, the part of the step clause that describes behavior, must be a
parenthesized expression corresponding either to the index of one or more procedures in
the agent’s procedure library or to a PDL primitive action type (see section 4.3). It may
contain variables. When a task is enabled, the value of the task description is set to equal
the step description with any variables replaced by values. The task description is used to
invoke a primitive action is appropriate, or if not, matched against procedure index
clauses to select the correct procedure.

The step-description may include the special symbol => followed by a variable or
other pattern. This specifies one or more output variables which become to a return-
value produced when the task derived from a step terminates. Thus,

(step s1 (find volume control => ?location))

would create a task such as {task-22 (find volume control)}. When this task terminates, it
should supply a return value which will be bound to the variable ?location. See the
description of the terminate primitive (section 4.3.2) for a description of how return-
values are generated.

It is an error for a task-description to contain a variable whose value is undefined
at the time the task is enabled. This is avoided by making task-specifiability a
precondition using waitfor clauses. Some waitfor preconditions bind values directly. For
example, (waitfor (on ?object table)) not only waits for something to be on the table but
also binds the variable ?object as a side-effect. Other preconditions wait for the
completion of tasks that insure a variable gets bound. For example, if step s2 waits for
step s1 above to complete, this insures that the variable ?location will be bound when s2
a procedure for s2 is selected.

4.2.4 Waitfor

step-level clause

(waitfor {<pattern>|<step-tag-variable>}+ [:and <test>+])

A waitfor clause defines a set of task preconditions which must be satisfied for the task to
become enabled – i.e. eligible for execution. Each pattern argument defines a single
precondition that is unsatisfied when the task is created. The precondition is considered
satisfied when a cogevent matching the pattern is detected. Cogevents are representation
of events that have become available to the action selection architecture. Some cogevents
are generated by the action selection architecture and reflect occurrences within it (e.g.
an event signaling that some task has terminated). Others are generated externally,
typically by agent perceptual resources such as vision (e.g. to signal that an object has
been detected).

It is important to note that waitfor preconditions are satisfied by events, not by
states represented in memory. For example, if a task comes into existence with a
precondition of the form (on book table) and a proposition of the same form exists in

30

memory8, this will not satisfy the precondition; the task will remain in a pending (non-
enabled) state until matched to a corresponding cogevent. The action selection
architecture prescribes no particular method for detecting when preconditions are
satisfied in the current state. One possibility is to include a step in the procedure to
explicitly check whether a precondition is satisfied, either perceptually or by memory
retrieval. Note: only allowing events to satisfy preconditions facilitated specification of
reactive behavior since it will sometimes be desirable to act only in response to change.

Waitfor clauses are useful for specifying execution order for steps of a procedure.
This is accomplished by making the termination of one step a precondition for the
enablement of another. The action selection architecture generates events of the form
(terminated <task>) when a task is terminated, so a clause such as (waitfor (terminated
?s3)) will impose order with respect to the task bound to the task-tag-variable ?s3 (see
4.2.3 for information on task-tag-variables). Termination preconditions can be expressed
using an abbreviated form: (waitfor <task-tag-var>)) == (waitfor (terminated <task-tag-
var>)). Thus, the expression (waitfor ?s3) is equivalent (waitfor (terminated ?s3)).

Preconditions in a waitfor clause are conjunctive; all must be satisfied for the task
to become enabled. Tests (s-expressions) optionally following the keyword :and
essentially add additional conjunctive preconditions. These (special) preconditions are
evaluated after all of the normal preconditions (specified before the :and) are satisfied. If
any of these expressions evaluate to nil, the special precondition is considered unsatisfied
and the task does not become enabled. Moreover, it can never become enabled since the
tests are not performed again. This restricts the use of special conditions to representing
conditional branches in a procedure. In the following example, the agent’s behavior
depends on the relative value of the variables ?my-score and ?his-score.

(step s1 (cackle with glee)
 (waitfor (final-score ?my-score ?his-score :and (>= ?my-score ?his-score))))
(step s2 (sulk despondently)
 (waitfor (final-score ?my-score ?his-score :and (< ?my-score ?his-score))))

It is possible to specify disjunctive preconditions using multiple waitfor clauses.
For example, step s2 prescribes terminating a hole-digging task if either the hole has been
dug to the specified depth or if the shovel needed to dig the breaks.

(step s1 (dig hole ?depth))
(step s2 (terminate)
 (waitfor ?s1)
 (waitfor (broken shovel)))

Correctly specifying waitfor preconditions is perhaps the trickiest part of PDL.
On important issue arises from the fact that, in Apex, preconditions are satisfied
independently, not jointly as might sometimes seem more intuitive. For example, one
might want to express a behavior that becomes enabled in response to a red light,

8 The Apex architecture does not include a built-in memory for world-state. Typically, this function is
handled by a resource component defined to take encode and retrieve commands from the agent
mechanisms.

31

representing this with (waitfor (color ?object red) (luminance ?object high)). However,
vision might detect stopsign-1 that is red but not a light and generate a cogevent of the
form (color stopsign-1 red). This will satisfy the first listed precondition, binding the
variable ?object to stopsign-1. The second precondition will then remain unsatisfied
unless stopsign-1 becomes highly luminant. Planned improvements to PDL will provide
the flexibility to express joint preconditions.

4.2.5 Select

step-level clause

(select <variable> <s-expression>)

The select clause is used to choose between alternative procedures for carrying out a task.
Its influence on selection is indirect. The direct effect of a select clause is to bind the
specified variable to the evaluation of the Lisp-expression argument. This occurs as the
task becomes enabled, just prior to selecting a procedure for the associated task, so
instances of the variable in the task description will be replaced by the new value and
may affect procedure selection.

(step s1 (press ?button with ?extremity)
 (select ?extremity (if (> (height ?button) .5) ‘hand ‘foot)))

In the example above, the value of the variable ?extremity is set to hand if the button is
more than .5 meters off the ground, otherwise it is set to foot. Assuming procedures with
index clauses (index (press ?button with hand)) and (index (press ?button with foot)), the
effect of the selection clause is to decide between the procedures.

known bug: a step may only contain one select clause

4.2.6 Period

step-level clause

(period :recurrent [<test>] [:enabled [<test>]] [:reftime {enabled|terminated}]
 [:recovery <interval>])

The period clause is used to create and control repetition. The simplest form of the
clause, (period :recurrent) declares that the task should be restarted immediately after it
terminates and repeat continuously. In this case, repetition will only cease when its
parent task terminates or the task is explicitly terminated (by a terminate primitive
action). The optional test condition is a Lisp expression that is evaluated; if nil, the task
does not repeat. This makes the task behave as if in a repeat-until loop.

By default, any waitfor preconditions associated with a recurrent task are reset to
their initial unsatisfied state when the task restarts. If present, the optional :enabled
argument causes the task to restart in an enabled state – i.e. with preconditions satisfied.

32

An optional test for enablement is evaluated at restart-time; if it evaluates to nil, the task
is restarted with all preconditions unsatisfied as in the default case.

 The optional :reftime argument is used to specify whether to start a new instance
of the task when the old instance terminates or when the old instance becomes enabled.
Restarting at termination time is the default, producing repetition in the normal sense. If
the value of reftime equals enabled, the task does not repeat; instead a whole new
instance of the task is created, coexisting with the current one. This option is provided as
a way to specify response policies – i.e. that a response task should be generated to a
given class of events even if one or more such response tasks are already ongoing.

(step s5 (shift-gaze ?visob)
 (waitfor (new (visual-object ?visob)))
 (period :recurrent :reftime enabled))

For example, the step above represents a policy of shifting gaze to any newly appearing
object, even if it appears while in the process of shifting gaze to a previously appearing
object. If the task only recurred at terminate-time, objects appearing during a previous
gaze-shift response would be ignored. To prevent infinite generation of new task
instances, steps specified with enable-time recurrences cannot be restarted in enabled
state. Thus, the enabled parameter must be nil (the default) and the step must include
waitfor preconditions.

The :recovery argument temporarily reduces a repeating task’s priority (4.2.9) in
proportion to the amount of time since the task was last executed. This reflects a
reduction in the importance or urgency of reexecuting the task. For example, after
checking a car’s fuel gauge, there is no reason to do so again soon afterwards since little
is likely to have changed. In the following example, the priority of task for repeatedly
monitoring the fuel gauge is reduced to 0 immediately after performing the task, and
gradually rises to its full normal value over a period of 30 minutes.

(step s5 (monitor fuel-gauge) (period :recurrent :recovery (30 minutes)))

4.2.7 Forall

step-level-clause

(forall <var> in {<var>|<list>})

The forall clause is used to repeat an action for each item in a list. For example, the
following step prescribes eating everything in the picnic basket.

(step s3 (eat ?food)
 (forall ?food in ?basket-contents)
 (waitfor ?s2 (contents picnic-basket ?basket-contents))

The effect of a forall clause is to cause a task to decompose into a set of subtasks, one for
each item in the list parameter. Thus, if the step above generates {task-12 (eat ?food)}

33

and the cogevent (contents picnic-basket (sandwich cheese cookies)) occurs, the variable
?basket-contents will become bound to the list (sandwich cheese cookies). Later, when
the task bound to ?s2 is terminated, task-12 becomes enabled. Normally, the action
selection architecture would then select a procedure for task-12. The forall clause takes
effect just prior to procedure selection, creating a set of new tasks for each item in the
forall list. Each of these is a subtask of the original. In this example, the forall clause
would result in subtasks of task-12 such as {task-13 (eat sandwich)}, {task-14 (eat
cheese)} and {task-15 (eat cookies)}. Procedures would then be selected for each of the
new tasks.

(step s1 (examine indicator ?indicator)
 (forall ?instrument in (fuel-pressure air-pressure temperature))
 (period :recurrent))

Note that forall can be combined with period. In the example above, the step prescribes
repeatedly examining a set of instruments.

4.2.8 Profile

procedure-level clause

(profile <resource>+)

The profile clause lists discrete resources required for using a procedure.9 Whenever the
procedure is selected for a task, the resource requirements become additional
preconditions (beyond those prescribed by waitfor clauses) for beginning execution of the
task. For example, the following procedure declares that if selected as a method for
carrying out a task, that task cannot begin execution until the action selection architecture
allocates to it a resource named right-hand.

(procedure
 (index (shift manual-transmission to ?gear))
 (profile right-hand)
 (step s1 (grasp stick with right-hand))
 (step s2 (determine-target-gear-position ?gear => ?position))
 (step s3 (move right-hand to ?position) (waitfor ?s1 ?s2))
 (step s4 (terminate) (waitfor ?s3)))

The profile may specify resources as variables as long as these are specified in the index
clause. For example, the procedure above could be specified as follows:

(procedure
 (index (shift manual-transmission to ?gear using ?hand))

9 The profile clause is only used for “blocking” resources such as hands and eyes that can only be allocated
to one task at a time, but may be reallocated freely. There are currently no mechanisms to support
reasoning about “depletable” resources such as fuel or money.

34

 (profile ?hand)
 …)

Resource preconditions are not determined until a procedure is selected, and therefore not
after all waitfor preconditions have been satisfied. Thus, the architecture only makes
allocation decisions for tasks that are enabled or already ongoing. The architecture
allocates resources to tasks based on the following rules:

1. A task is competing for the resources listed in its profile if it is either enabled (all
waitfor preconditions satisfied) or already ongoing

2. If only one task competes for a resource, it is allocated to that task
3. If multiple tasks compete for a resource, allocation is awarded to the task with

highest priority (see 4.2.9)
4. If one of the tasks competing for a resource is already ongoing (and thus has

already been allocated the resource), its priority is increased by its interrupt-cost
(4.2.10). By default, interrupt cost is slightly positive, producing a weak
tendency to persist in rather than interrupt a task.

5. Tasks at any level in a task hierarchy may require and be allocated resource. A
task does not compete with its own ancestor.

6. If a profile lists multiple resources, it is allocated all of them or none. If there is
a resource for which it is not the highest priority competitor, then it does not
compete for the other resources and any resources already allocated become
deallocated. This rule takes precedence over rules 2 and 3.

Resources listed in a profile clause do not necessarily correspond to components of the
agent resource architecture, the collection of modules that either provide information to
the action selection architecture or can be commanded by it using the primitive action
start-activity (4.3.1). Resources named in a profile clause that do not correspond to an
element of the resource architecture are virtual resources.

4.2.9 Priority

step-level clause

(priority {<integer>|<variable>|<s-expression>})

A priority clause specifies how to assign a priority value to a task in order to determine
the outcome of competition for resources. The assigned value is a unitless integer. It can
be specified as a fixed value, as a variable that evaluates to an integer or as an arbitrary
Lisp s-expression.

A task’s priority is first computed when it becomes enabled, is matched to a
procedure that requires a resource (i.e. includes a profile clause) and is found to conflict
with at least one other task requiring the same resource. If the task is not allocated a
needed resource, it remains in a pending state until one of several conditions arise,
causing it to again compete for the resource. These conditions are: (1) the resource is
deallocated from a task that currently owns it, possibly because that task terminated; (2)

35

new competition for that resource is initiated for any task; (3) the primitive action
reprioritize (4.3.5) is executed on the task. Whenever a task begins a new resource
competition, its priority is recomputed.

A step may have multiple priority clauses, in which case, the priority value from
each clause is computed separately. The associated task is assigned whichever value is
the highest. This value is the local priority value. Tasks may also inherit priority from
ancestor tasks. A task could have one or more inherited priorities but no local priority.
Alternately, it may have no inherited priorities but a local priority. In all cases, task
priority equals the maximum of all local and inherited values.

Note: In some cases, a task will become interrupted but one or more of its
descendant tasks will become or remain ongoing. These descendants no not inherit
priority from the suspended ancestor.

4.2.10 Interrupt-cost

step-level clause

(interrupt-cost {<integer>|<variable>|<s-expression>})

Interrupt-cost specifies a degree of interrupt-inhibition for an ongoing task. Interrupt cost
is computed whenever the task is ongoing and competing for resources – i.e. resources it
has already been allocated and is “defending.” The value is added to the task’s local
priority.

4.2.11 Assume

procedure-level clause

(assume <var> <proposition> <duration>)

An assume clause declares that a specified proposition should be treated as an
assumption. By default, the variable specified in the assume clause is set to T, indicating
that the assumption has not been contradicted. If a cogevent that contradictions does
occur, the value of the variable is set to nil. After an amount of time passes equal to the
duration parameter, the value reverts to T.

The assume clause is meant to be used for procedure selection, allowing the
architecture to select alternative means for carrying out a task in non-standard conditions.
For example, the following procedure selects route B (rather than route A as usual) for
getting home from work if there is accident on highway-5.

(procedure
 (index (get home from work))
 (assume ?clear-path (accident-on-path route-a false) (1 day))
 (step s1 (enter and start car))
 (step s2 (drive route ?selected-route)
 (select ?selected-route (if ?clear-path ‘route-a ‘route-b)))

36

 (waitfor ?s1))
 (step s3 (terminate) (waitfor ?s2)))

One very unusual aspect of the assume clause is that it applies not to tasks, but to
procedures. In other words, the presence of the procedure in the procedure set of an
agent causes the agent to track the specified assumption. If an event contradicting the
assumption occurs, this is reflected in the value of the assume variable even if the
procedure has not been selected for any current tasks. If such a task comes into existence
during the interval between a detected violation of the assumption and the time when the
assumption variable reverts to T, the assume variable will have the value nil for that task.

A cogevent is considered to violate the specified assumption if the assumption
proposition ends in a Boolean value (T, nil, true, false) and the cogevent has the same
form with the last value in the form holding the opposite value. For example, a cogvent
of the form (accident-on-path route-a true) would violate the assumption in the example
above. Assumption violation also occurs if a cogevent occurs indicating a changed value
in a fluent proposition. For example, the cogevent (color danger-indicator red) violates
an assumption proposition of the form (color danger-indicator green) as long as color
propositions have been declared fluents (4.2.12).

To track the truth value of declared assumptions, the architecture automatically
generates a procedure with (index (monitor-assumptions)) and steps for monitoring each
assumption specified in an assumption clause. The example above would cause a step
such as the following (simplified)

(step g813 (set-temporary-value ?selected-route nil (1 day))
(waitfor (accident-on-path route-a true))
(period :recurrent))

 to be added to the monitor assumptions procedure. This procedure is automatically
selected and executed when the agent is initialized, so assumption monitoring is always
active. Since the assumption variable is an Apex global variable, the value is not tied to
the creation or termination any task and is accessible to all tasks.

4.2.12 Declare-fluent

First-class construct

(declare-fluent <pattern> <var-list>)

Fluents are propositions that can contradict other, similar. propositions; if presented in
temporal sequence, they can make other propositions obsolete. For example,
propositions 1 and 2 below are contradictory because, quantum mechanics aside, a device
cannot be both on and off at the same time. If proposition 1 is presented, followed at
some later time by 2, this can interpreted as a change of state that makes 1 obsolete.
Propositions 3 and 4, in contrast are not in contradiction because an object can be inside
multiple containers.

37

(1) (power television-1 on)
(2) (power television-1 off)
(3) (in television-1 living-room-1)
(4) (in television-1 house-1)

The declare-fluent construct specifies a that a given propositional form is a fluent. The
pattern parameter is a list containing constants and variables. The variable-list parameter
identifies pattern elements that determine whether the two proposition are potentially in
conflict. Actual conflict requires some difference in value in any remaining variable
element. For example, given

(declare-fluent (power ?device ?state) (?device))

propositions 1 and 2 above both match the fluent pattern. Because they have the same
value for ?device, they are potentially in conflict. Because, they have different values for
the remaining variable specified in the fluent pattern (i.e. ?state), they are actually in
conflict. The propositions below, in contrast, do not conflict with either 1 or 2.

(5) (power television-2 off)
(6) (weight television-1 100)

Fluent definition are used in conjunction with the assume clause (4.2.11) and can be used
to define the information handling behavior of agent resources such as vision and
memory.

4.2.13 Rank

step-level clause

(rank {<integer>|<variable>|<s-expression>})

Like a priority clause, a rank clause specifies how to determine the outcome of
competition for resources. The assigned value is a unitless integer. It can be specified as
a fixed value, as a variable that evaluates to an integer or as an arbitrary Lisp s-
expression. Rank values are computed whenever priority values are computed (4.2.9).

Though also used to resolve resource conflicts, rank is very different form
priority. Whereas a task’s priority is an intrinsic (globally scoped) property, its rank
depends on what task it is being compared to. For example, consider the procedure
below:

(procedure
 (index (record phone number of ?person))
 (step s1 (determine phone-number of ?person) (rank 1))
 (step s2 (write down phone-number of ?person) (rank 2))
 (step s3 (terminate) (waitfor ?s1 ?s2)))

38

This procedure specifies that activities related to determining a specified person’s phone
number can be carried out in parallel with activities for writing the number down – i.e.
the latter task and all of its descendant subtasks (e.g. {task-25 (grasp pencil)}) do not
have to wait for the former task to complete. However, resource conflicts will
automatically be resolved in favor of the better ranked task – i.e. the one with the lower
priority value. Thus, if {task-25 (grasp pencil)} and {task-22 (grasp phone book)} both
need the right hand, the latter task will be favored since it descends from a task with
superior rank.

To determine rank for two conflicting tasks A and B, the architecture locates a
pair of tasks A’ and B’ for A’ is an ancestor of A, B’ is an ancestor of B, and A’ and B’
are siblings – i.e. derived from the same procedure. If no rank is specified for A’ and B’,
A and B have no rank relative to one another. Resource conflict is then resolved based
on priority (4.2.9). Otherwise, rank values for A’ and B’ are inherited and used to resolve
the conflict.

4.3 Primitives

Primitives are actions whose effects are defined by the Apex architecture rather than by a
PDL procedure. They cannot be further decomposed into more fundamental tasks. The
term operator is used for behaviors that are low-level from the point of view of a
particular domain or task model. For example, in some models of human-computer
interaction, behaviors such as pushing a button and moving a mouse to a target location
might be considered operators. Operators are generally represented as PDL procedures
that employ primitives, particularly start-activity. The full set of Apex primitives are
described in the sections below.

4.3.1 Start-activity

primitive

(start-activity <resource> <activity-type> [:duration <time>] [<param-val-pair>]*)

The start-activity primitive is used to initiate action in a module external to the action
selection architecture. Like all primitive tasks, a start-activity task takes zero time to
execute and is terminated immediately10. However, an activity started by the primitive
will typically go on for some non-zero time interval. To allow PDL to influence the
activity during this interval and to respond when it completes, the start-activity returns a
pointer to a representation of the activity. For example, the start-activity step in the
following procedure signals a resource module (either left-hand or right-hand) to begin an
activity of type pressing. A representation of the activity is returned when step s1
terminates and is bound to the variable ?a. The activity’s completion is later (1 second
later) signaled by a cogevent of the form (completed <activity>) which, in this case,
results in the termination of the overall task.

10 The term “task” is reserved for actions and potential actions represented within the action selection
architecture. “Activities” are performed outside the architecture.

39

(procedure
 (index (press button ?b with ?hand))
 (profile ?hand)
 (step s1 (start-activity ?hand pressing :target ?b :duration (1 second) => ?a))
 (step s2 (terminate) (waitfor (completed ?a))))

A start-activity task essentially sends a message to a resource11 module to begin doing
something. A start-activity step must specify the resource that will receive the message
followed by the type of activity to be initiated. Other parameters may then be specified
including :duration and others specific to the activity type (e.g. pressing activities require
a : target). If no duration parameter is specified in PDL, duration is determined by the
resource module and/or the activity type definition.

4.3.2 Terminate

primitive

(terminate [<task>] [>> <return-value>])

A terminate step defines conditions for stopping execution of a specified task should stop.
By default, the target task is the one whose associated procedure contains the terminate
step. Optionally, the step can specify some other task to be terminated. For example, the
procedure below specifies that the agent should whistle while it works, but stop whistling
if it gets chapped lips. The gold mining task, parent of the tasks generated from steps of
the procedure, terminates when the work is done.

(procedure
 (index (mine gold))
 (step s1 (whistle))
 (step s2 (work))
 (step s3 (terminate ?s1) (waitfor (chapped lips)))
 (step s4 (terminate) (waitfor ?s2)))

Terminating a task has a number of effects:
• the task’s state is set to terminated
• the task is removed from the action selection architecture’s agenda
• the architecture stop monitoring waitfor preconditions associated with the task
• a cogevent of the form (terminated <task>) is generated – see section 4.2.4
• any resources allocated to the task are deallocated
• All of its subtasks are themselves terminated (indirect termination)
• If it is a periodic task (4.2.6) that passes its recurrence test and was not indirectly

terminated, the task is restarted

11 Only resources represented by a module external to the action selection architecture, and thus a
component of the agents resource architecture, can receive start-activity messages. Resources named in
profile clauses but not externally represented can still be the subject of allocation decisions. These are
“virtual resources.”

40

4.3.3 Reset

primitive

(reset <task>)

Reset causes the target task to terminate and then restart with all preconditions satisfied.
It is generally used for trying again after failure. E.g.

(procedure
 (index (start-engine))
 (step s1 (turn-key))
 (step s2 (reset) (waitfor (engine-sound sputtering)))
 (step s3 (terminate) (waitfor (engine-sound turned-over))))

4.3.4 Cogevent

primitive

(cogevent <event>)

The cogevent primitive generates a cogevent of the specified form, potentially matching
task preconditions just as cogevents generated by resources (especially perceptual
resources) or by the action selection architecture. One important use of this primitive is
to represents states that are inferred but not directly observed, such as hidden effects of an
agent action. For example, step s4 generates an event representing the inference that an
elevator has been summoned after pressing a button for this purpose.

(step s3 (press button elevator-down-button) ..)
(step s4 (cogvent (summoned elevator)) (waitfor ?s3))

The <event> parameter of a cogevent step can be any parenthesized expression not
containing variables.

4.3.5 Reprioritize

primitive

(reprioritize [<task>])

Reprioritize steps are used to specify conditions in which task priorities might have
changed; justifying reevaluation of resource allocation decisions. A reprioritize action
causes the architecture to recompute the specified task’s priority, then initiate a general
competition for the resource(s) needed by the task. If the task is enabled but has not been
allocated resources, this may result in immediate interruption of the task currently using

41

those resources. If the task is currently ongoing, reprioritization may cause it to be
interrupted.

4.3.6 Hold-resource

primitive

(hold-resource <resource-name> [:ancestor <integer>])

Hold resource adds a resource to the list of resources a task needs in order to execute and
then causes the task to compete for the resource with other contenders. Whereas the
profile clause (4.2.8) establishes resource requirements as the task is enabled and its
procedure selected, hold-resource adds requirements while the task is already ongoing. If
the task competes successfully, there is no immediate effect. If some other task requiring
the specified resource has higher priority, the task is interrupted.

The optional ancestor parameter specifies the target task. By default, the new
requirement is added to the parent of the hold-resource task – i.e. the task whose
associated procedure contains the hold-resource step. This corresponds to an ancestor
value of 1 (1 level up the task hierarchy). Higher values target tasks higher in the
hierarchy.

4.3.7 Release-resource

primitive

(release-resource <resource-name> [:ancestor <integer>])

Release-resource removes a resource from the list of resources a specified task requires in
order to execute, and then causes the task to compete for its needed resources. It is
typically invoked while the task is ongoing, freeing up the resource for use by some other
task. The optional ancestor parameter specifies the target task. By default, the resource
requirement is subtracted from the parent of the release-resource task – i.e. the task
whose associated procedure contains the release-resource step. This corresponds to an
ancestor value of 1 (1 level up the task hierarchy). Higher values target tasks higher in
the hierarchy.

4.4 PDL variables

An understanding of how variable binding occurs and where the information comes from
is crucial for specifying behavior in PDL. Variables in PDL become bound (and
rebound) to values in several different circumstances as summarized below:

• variables in an index clause are bound after procedure selection
• variables in a profile clause are bound after procedure selection
• step tags are turned into variables and bound to tasks during task refinement

42

• variables in waitfor clauses are bound when matching cogevents occur
• variables in a selection clause are bound just prior to procedure selection
• variables in a return value form (following a =>) are bound at task termination
• the map variable in a forall clause is bound during task refinement
• global variables are initially bound as the agent is initialized

Apex maintains two kinds of variables: local and global. Local variables are defined with
respect to a set of sibling tasks – i.e. immediate subtasks of a common parent. For
example, the task {task-25 (get milk from refrigerator fridge-1 with right-hand)} might
become enabled and the following procedure selected to carry it out:

(procedure
 (index (get ?item-type from refrigerator ?refrigerator with ?hand))
 (profile ?hand)
 (step s1 (open door of ?refrigerator with ?speed)

(select ?speed (if (> (hunger ?agent) 5) ‘quickly ‘slowly)))
 (step s2 (find ?item-type in ?refrigerator => ?location) (waitfor ?s1))
 (step s3 (grasp object at ?location with ?hand) (waitfor ?s2))
 (step s4 (remove hand ?hand from ?refrigerator) (waitfor (grasped ?item)))
 (step s5 (close door of ?refrigerator) (waitfor ?s4))
 (step s6 (terminate) (waitfor ?s5)))

In selecting the procedure, the variables ?item-type, ?refrigerator and ?hand become
bound to the values milk, fridge-1 and right-hand respectively. Later, when task-25 is
allocated the right-hand resource, new tasks will be created including, e.g.

{task-28 (open door of refrigerator-1 with ?speed)}
{task-32 (close door of refrigerator-1)}

Together these local variable bindings generated by selecting a procedure for task-25
form the local context for these tasks. The local context is stored with the parent task.
Note that the printed form of these tasks has some variables replaced by values and some
as variables. The writing convention is that values are shown instead of variables if
bindings have been established. Just after task refinement, the variable ?refrigerator is
bound but ?speed is not. This convention does not imply that these values are fixed for
the lifetime of the task. Generally, if a binding changes, the task description will change
to reflect this. Tasks are stored with variables unbound; replacement occurs as needed
based on the current local context.

When the task refinement process creates new subtasks, new bindings are added
to the local context. First, a new variable is created for each step tag in the selected
procedure. For instance, the variable ?s5 is created and bound to task-32; the binding is
then added to the local context stored with task-25. Second, the variable ?self is created
and bound to task-25, enabling subtasks of task-25 to refer to their parent.

Following task refinement, the state of each task is established. Tasks with
waitfor preconditions are initialized in the pending state and must await enabling
cogevents. Tasks such as task-28 have no preconditions and thus start in an enabled

43

state. Before procedure-selection for this task is performed, its select clause is evaluated.
In this case, the variable ?speed will either be assigned the value slowly or quickly
depending on the hunger value of the agent. This new variable binding will then be
added to the local context, making it available to specify task-28 and any of its siblings.

With the value of ?speed defined, task-28 becomes fully specified12. A procedure
for it is selected, it is executed in the usual fashion and later terminates, enabling task-29
for finding milk in fridge-1. The termination of task-29 has an important side-effect. It
returns a value which is bound to the variable ?location. The binding is added to the local
context.

Bindings are frequently generated as cogevents match to preconditions expressed
in a waitfor clause. In this case, it is assumed that a hand resource automatically
generated an event of the form (grasped <object>) whenever it succeeds in a grasp
action. In this case, the hand generates (grasped milk-1) which causes the variable ?item
to become bound to milk-1. This binding is then added to the local context.

Global variables are initially defined when the agent is initialized. The only
global variable of general importance is ?agent which is always bound to a representation
of the intelligent agent as a whole (although see 4.2.11). To use this effectively requires
knowledge of the kinds of state information stored in an agent structure and how to
access them (6.5). The example used above in which the hunger value of the agent is
accessed is fanciful, though it is possible to extend the general agent model to include any
kind of state data.

Information that results in variable bindings comes from several places. First, it
can come from processes internal to the action selection architecture itself. For example,
the architecture creates the tasks that get bound to step variables and generates cogevents
signaling, e.g. task termination, task interruption and resource allocation (appendix A).
Second, resources generate cogevents describing the internal state of those resources and,
in the case of perceptual resources, external events and states. Finally, the action
selection architecture can in principle retrieve information from a memory component.
The action selection architecture does not include a memory element, although see Freed
(1998) for an example.

12 All the variables in a task description must be specified prior to selecting a procedure – i.e. all must be
assigned values either before the task becomes enabled, during enablement as a consequence of cogevent
matches, or during the procedure selection process by a select clause. If procedure selection is attempted
for a task that has not been fully specified, this produces an error.

44

References

Freed, M. (2000) Reactive Prioritization. Proceedings 2nd NASA International Workshop
on Planning and Scheduling for Space. San Francisco, CA.

Freed, M. (1998a) Simulating Human Behavior in Complex, Dynamic Environments.
Doctoral Dissertation. Department of Computer Science, Northwestern University.

Freed, M. (1998b) Managing multiple tasks in complex, dynamic environments. In
Proceedings of the 1998 National Conference on Artificial Intelligence. Madison,
Wisconsin.

Freed, Michael and Remington, R. (2000a) GOMS, GOMS+ and PDL. In Working
Notes of the AAAI Fall Symposium on Simulating Human Agents. Falmouth,
Massachusetts.

Freed, M. and Remington, R. (2000b) Making Human-Machine System Simulation a
Practical Engineering Tool: An APEX Overview. In Proceedings of the 2000
International Conference on Cognitive Modeling. Groningen, Holland.

Freed, M. and Remington, R. (1998) A conceptual framework for predicting errors in
complex human-machine environments. In Proceedings of the 1998 Meeting of The
Cognitive Science Society. Madison, Wisconsin.

Freed, M. and Remington, R. (1997) Managing decision resources in plan execution.
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence.
Nagoya, Japan.

Freed, M. and Shafto, M. (1997) Human System Modeling: Some Principles and a
Pragmatic Approach. Proceedings of the 4th International Workshop on the Design,
Specification, and Verification of Interactive Systems. Granada, Spain.

Freed, M., Shafto, M., and Remington, R. (1998) Using simulation to evaluate designs:
The APEX approach. In Chatty, S. and Dewan, P., editors, Engineering for Human-
Computer Interaction, chapter 12. Kluwer Academic

John, B. E., Vera, A. H., Matessa, M., Freed, M., and Remington, R. (2002) Automating
CPM-GOMS. In Proceedings of CHI’02: Conference on Human Factors in Computing
Systems. ACM, New York, pp. 147-154.

45

Appendix A: Event Traces

A.1 Predefined show-levels

all : all events
none : no events
default : only task-started events
actions : resource related events
asa-low : action selection architecture event, low detail
asa-medium : action selection architecture event, medium detail
asa-high : action selection architecture event, high detail
cogevents : cognitive events
simulation : activity related events

A.2 Lisp commands for controlling trace output

(show) : query the current TraceConstraint (syntax on next page)
(show :runtime) : see event trace as simulation runs (useful for debugging)
(show :hms) : see time displayed in hours/mins/secs
(show :level level) : effects the given ShowLevel (see list of levels below)
(show EventType) : adds event type to trace (see event types list)
(show Constraint) : adds events matching given TraceConstraint to trace
(unshow) : turns off event trace
(unshow :runtime) : suppress runtime display of event trace
(unshow :hms) : see time displayed as an integer
(unshow EventType) : removes event type from trace (see event types lists below)
(unshow Constraint) : removes events matching given TraceConstraint from trace
(generate-trace) : generate and print the trace
(trace-size) : query number of events in latest trace
(define-show-level name TraceConstraint) : defines show level (name is symbol)

A.3 Trace constraint syntax

TraceConstraint :
 TraceParameter { see below }
| (and TraceConstraint*) { matches events meeting all given constraints }
| (or TraceConstraint*) { matches events meeting any given constraint }
| (not TraceConstraint) { matches events that fail the given constraint }

TraceParameter :
 (event-type <symbol>) { matches events of given type }
| (object-id <symbol>) { matches events containing given object }
| (time-range (<low> <high>)) { matches events occuring in given time range }

TimeExpression : (TimePair+) { one or more int/unit pairs }

46

TimePair : (<integer> TimeUnit)
TimeUnit : ms | msec | msecs
 | s | sec | secs | second | seconds
 | m | min | mins | minute | minutes
 | d | day | days

A.4 Event Types

Each event type is explicitly logged and can be filtered in/out for trace view. Verbose
event descriptions name event parameters not including timestamp.

Action selection architecture events

Types in curly brackets refer to ASA actions that are not yet supported. Causal event 0 is
the initialize event. * means an associated cogevent is generated. Terminology changes:
enabled refers to satisfaction of non-resource preconditions – any resource preconditions
not yet satisfied; executed tasks must take 0 time – i.e. primitive and special (Lisp
callout) tasks; started is used for non-primitives. Resource deallocation events occur
when a task is terminated or interrupted.

Need to review this list for meaningful and constent naming, completeness/usefulness of
causal information.

Event type Description (not incl time) Causal
events

1 task-created <task> 0,17
2 monitor-created <monitor> <task> 0,17
3 monitor-satisfied <monitor> <cogevent> 2+any
4 {monitor-tentatively-satisifed} <monitor> <cogevent> 2+any
5 {monitor-expired} <monitor> 2+time
6 {monitor-desatisfied} <monitor> <cogevent> 2+any
7 enablement-testing-started <task> 3
8 enabled* <task> 1+7+3*
9 refused-enablement* <task> 1+7
10 procedure-selected <task> => <procedure> 8+10
11 conflict-detected <task> <task> <resource> 10,12
12 conflict-resolved* : winner <task> :loser <task> 11,13/13
13 priority-computed for <task> = <priority> 11,15
14 resource-allocated* <task> <resources> 11+12,16
15 interrupted* <task> <task> 8+12
16 resource-deallocated* <resource> :from <task> 15,20
17 task-started* <task> 8+14
18 executed* <task> 8+14
19 resumed* <task> 15+14
20 terminated* <task> 18,20
21 reset* <task> 18

47

22 reinstantiated* <task> 8,17,20
23 assumption-violated <varname> <agent> 3

Resource architecure events

Event-type Description (not incl. time) Causals
Control
1 started* <activity> <parameters>*
2 completed* <activity>
3 stopped* <activity>
4 clobbered <activity> :by <activity>
Vision
1 nothing-new* vision
2 pos* <visobfile> <coordinates>
3 color* <visobfile> <colorname>
4 orientation* <visobfile> <degrees>
5 shape* <visobfile> <shapelist|shape>
6 contrast* <visobfile> <value>
7 blink* <visobfile> <rate>
8 elements* <visobfile> <list>
9 contains* <visobfile> <vof-list>
10 contained-by* <visobfile> <visobfile>
Gaze
1 fixated* <visobfile>
2 winnowed* <visobfile> <feature>
3 held-gaze* <locus> <time>
Memory
1 encoded* <proposition>
2 retrieved* <proposition>
3 new* <proposition>
4 revalued* <proposition>
5 refreshed* <proposition>
6 refined* <proposition>
Hands
1 grasped* <hand> <object>
2 released* <hand> <object>
3 moved* <hand> <object>
4 turned-dial* <hand> <dial> <position>
5 typed* <hand> <keyboard> <msg>

General simulation events

1 started-activity <activity> <primary-simob>
2 initialized-activity <activity> <primary-simob>

48

3 updated-activity <activity> <primary-simob>
4 stopped-activity <activity> <primary-simob>
5 completed-activity <activity> <primary-simob>

49

50

Appendix C: Troubleshooting

C.1 Common problems

This section contain possible solutions to some of the problems users have reported.

Problem:
A task that should start never does. It seems to wait forever.

Explanations/Solutions:
1. There is a mismatch between the forms (patterns) of the event and waitfor

precondition
a. One of the patterns contains a spelling error
b. There is a difference in the order of pattern elements. E.g. a perceptual

event of the form (between a b c) won’t match a precondition of the form
(between a c b), even though both mean that a is observed to be between b
and c.

c. There is a difference in the type of pattern elements. E.g. (distance a b 2)
vs. (distance a b 2.0)

d. The number of parameters in the events and precondition are different.
2. The event occurs before the task whose precondition it should match comes into

existence. This can happen when events and preconditions are both created at the
same “instant” according to the simulation clock.

3. The event occurs after the task whose precondition it should match is
(prematurely) terminated.

Problem:
A task starts prematurely, before its waitfor preconditions should be satisfied.

Explanations/solutions:
1. A precondition is less constrained than it seems to be, allowing it to match events

that it shouldn’t match. E.g. A procedure consists of steps s1 (no preconditions),
s2 (waits for s1; binds?x when it terminates) and s3 (waits for (color ?x red)).
The intention may be to determine an object of interest in step s2 and then wait
for it to turn red, but here s3 will be enabled by observing ANY red object.

2. An event matching the precondition is being generated from an unexpected source
3. There are disjoint enablement conditions (multiple waitfor clauses), allowing the

task to become enabled for execution in an unexpected way.

C.2 Known bugs

Note: bugs associated with specific Apex processes or PDL constructs are listed in the
appropriate section.

51

Apex can crash if an agent acts in reference to a world object at time 0. The reason is
that the behavior might be inititated before the world object is specified and incorporated
into the physical environment model. Avoid this problem by insuring that the assemble
method is called on all physical environment objects before any agent objects are
initialized.

The read macro #L that forces a Lisp evaluation at create time does not work in primitive
(directly executable) procedure steps.

Activities can be started with negative duration values. This should produce an error.

52

Appendix D: Pattern matching

Pattern matching is used in a variety of PDL constructs including index, waitfor and step.
The following examples illustrate the behavior and capabilities of the pattern matching
algorithm. This text and the algorithm itself are taken from Paradigms of AI
Programming by Peter Norvig (1991).

(pat-match '(x = (?is ?n numberp)) '(x = 34))
;;;; -> ((?n . 34))

(pat-match '(x = (?is ?n numberp)) '(x = x))
;;;; -> NIL

(pat-match '(?x (?or < = >) ?y) '(3 < 4))
;;;; -> ((?Y . 4) (?X . 3))

(pat-match '(x = (?and (?is ?n numberp) (?is ?n oddp))) '(x = 3))
;;;; -> ((?N . 3))

(pat-match '(?x /= (?not ?x)) '(3 /= 4))
;;;; -> ((?X . 3))

(pat-match '(?x > ?y (?if (> ?x ?y))) '(4 > 3))
;;;; -> ((?Y . 3) (?X . 4))

(pat-match '(a (?* ?x) d) '(a b c d))
;;;; -> ((?X B C))

(pat-match '(a (?* ?x) (?* ?y) d) '(a b c d))
;;;; -> ((?Y B C) (?X))

(pat-match '(a (?* ?x) (?* ?y) ?x ?y) '(a b c d (b c) (d)))
;;;; -> ((?Y D) (?X B C))

(pat-match '(?x ?op ?y is ?z (?if (eql (?op ?x ?y) ?z))) '(3 + 4 is 7))
;;;; -> ((?Z . 7) (?Y . 4) (?OP . +) (?X . 3))

(pat-match '(?x ?op ?y (?if (?op ?x ?y))) '(3 > 4))
;;;; -> NIL

(pat-match-abbrev '?x* '(?* ?x))
;;;; -> (?* ?X)

(pat-match-abbrev '?y* '(?* ?y))
;;;; -> (?* ?Y)

53

(setf axyd (expand-pat-match-abbrev '(a ?x* ?y* d)))
;;;; -> (A (?* ?X) (?* ?Y) D)

(pat-match axyd '(a b c d))
;;;; -> ((?Y B C) (?X))

(pat-match '(((?* ?x) (?* ?y)) ?x ?y) '((a b c d) (a b) (c d)))
;;;; -> NIL

